(21y^5-5y^4-18y^3)/(3y^4)

Simple and best practice solution for (21y^5-5y^4-18y^3)/(3y^4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (21y^5-5y^4-18y^3)/(3y^4) equation:


D( y )

3*y^4 = 0

3*y^4 = 0

3*y^4 = 0

3*y^4 = 0 // : 3

y^4 = 0

y = 0

y in (-oo:0) U (0:+oo)

(21*y^5-(5*y^4)-(18*y^3))/(3*y^4) = 0

(21*y^5-5*y^4-18*y^3)/(3*y^4) = 0

21*y^5-5*y^4-18*y^3 = 0

y^3*(21*y^2-5*y-18) = 0

21*y^2-5*y-18 = 0

DELTA = (-5)^2-(-18*4*21)

DELTA = 1537

DELTA > 0

y = (1537^(1/2)+5)/(2*21) or y = (5-1537^(1/2))/(2*21)

y = (1537^(1/2)+5)/42 or y = (5-1537^(1/2))/42

y^3*(y-((5-1537^(1/2))/42))*(y-((1537^(1/2)+5)/42)) = 0

(y^3*(y-((5-1537^(1/2))/42))*(y-((1537^(1/2)+5)/42)))/(3*y^4) = 0

( y-((1537^(1/2)+5)/42) )

y-((1537^(1/2)+5)/42) = 0 // + (1537^(1/2)+5)/42

y = (1537^(1/2)+5)/42

( y-((5-1537^(1/2))/42) )

y-((5-1537^(1/2))/42) = 0 // + (5-1537^(1/2))/42

y = (5-1537^(1/2))/42

( y^3 )

1*y^3 = 0 // : 1

y^3 = 0

y = 0

y in { 0}

y in { (1537^(1/2)+5)/42, (5-1537^(1/2))/42 }

See similar equations:

| 3x-4x+5x-9x= | | f(x)=x^2-16x+67 | | r+r+8=6 | | =(65000)x(1+0.016)100 | | 6a-1=17 | | (y-3)(y-3)=2y^2+2y-12 | | s(t)=-16t^2+20t+6 | | H(x)=25-y | | 2x-5x+5=10 | | t=240t-16t^2 | | 115+59+135+51=x | | 2x+48=12x+8 | | 2=s-2 | | 55+.25x=45+.35 | | 26x^2-2x=0 | | 12x-18=8x+6 | | 890=5(x+16) | | 3-20x^2=11x | | 10x^2+25x+3=0 | | 2=-1t | | .14x+2520=2400 | | 7q+5q= | | 6x^4-10x^3-6x^2= | | x-3.4=-12 | | 6x-26=5x | | 4/5x=7 | | y^2+9=2y^2+2y-12 | | -19x^2-12x^2+16x=0 | | 8x-52=4 | | -8(n-6)=5-7n | | -t/4=-3π | | x-10.4=4.6 |

Equations solver categories